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Shock-shock interaction on a slender supersonic cone 

By VICTOR D. BLANKENSHIP 
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(Received 15 October 1964 and in revised form 4 January 1965) 

The transient pressure field produced behind a plane shock wave of arbitrary 
strength, which encounters a slender supersonic cone head on, is theoretically 
predicted. The analysis is restricted to small cone angles (in order that Mach- 
reflexion will occur at the surface) and to inviscid flow. 

A conical-flow technique is utilized to transform the small-perturbation 
equations of time-dependent rotational motion of the fluid behind the deflected 
plane shock into time-independent equations. From these equations, a boundary- 
value problem for pressure alone, in the Mach-reflexion region, is derived which 
is solved numerically. Results for the small perturbation pressure field of the 
cone are contrasted with Smyrl’s (1963) results, which hold for a moving wedge, 
for a range of values of cone and plane shock speeds. 

1. Introduction 
This paper defines the magnitude and nature of the aerodynamic loading 

associated with the interaction between a blast wave and a slender supersonic 
cone. The problem has practical importance from the viewpoint of both weapon 
analysis and the vulnerability of either a missile or a re-entry vehicle to a nuclear 
blast. To date, no experimental or analytical results have been reported which 
elucidate this problem. The physical problem is that of a blast wave, which is 
considered to be a plane shock wave, meeting a slender cone which is moving in 
the opposite direction a t  supersonic speed. The plane shock is considered to be 
of arbitrary strength, and the supersonic cone is considered to have an attached 
shock. 

This work utilizes an approach similar to that used in the earlier work by Light- 
hill (1949) and Smyrl(l963). Lighthill considered the behaviour of an arbitrary- 
strength, plane shock wave moving along a wall and meeting a corner of small 
angle which is at rest relative to the surrounding air. When the corner is convex, 
pure diffraction occurs. At a concave corner Mach reflexion occurs; this case 
corresponds to  a plane shock wave meeting normally a thin infinite wedge at 
rest. Chester (1964) extended the problem of Lighthill to the case of infinite wedges 
at yaw. Ehlers & Shoemaker (1969) furnished a solution for the linearized inter- 
action between a weak shock wave and a moving half plane. Smyrl (1963) 
extended the work of Chester and Lighthill by finding the pressure field in closed 
analytic form for the region behind an arbitrary-strength shock wave which has 
encountered a thin airfoil moving at supersonic speed. His solution is valid 
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for wedges at small incidence to the free-stream flow and for wedges yawed with 
respect to the shock plane. He also extended the solution to include the case of 
a thin airfoil of arbitrary shape. 

Whitham (1957, 1958, 1959) developed an approximate theory for the pre- 
diction of shock patterns associated with the interaction of a blast wave with 
two- and three-dimensional stationary bodies. Bryson & Gross (1961) experi- 
mentally investigated the diffraction of plane strong shocks by several cones, 
a cylinder and a sphere, The diffraction pattern, in particular, the shape of the 
diffracted shocks, and the loci of the Mach triple points, compared favourably 
with the theoretical results obtained by Whitham. Whitham’s technique is 
based only on kinematical considerations and does not analyse the pressure 
distribution. Miles (1 963) attempted some preliminary calculations on the 
adaptation of Whitham’s technique to a moving body, utilizing the configuration 
employed by Smyrl, but these calculations yielded unsatisfactory results. Miles 
later ( 1964) obtained qualitatively satisfactory results. 

Ting & Ludloff (1952) treated the problem of a blast passing over the surface 
of a stationary arbitrary two-dimensional structure and were able to present the 
pressure and density fields in the whole domain behind the advancing blast in 
explicit analytic form. Ludloff & Friedman (1952) treated the problem of a 
strong blast passing over a stationary axially symmetric cone by a modification 
of the procedure of Ting & Ludloff. In  both these approaches, hyperbolic 
equations were used throughout. 

2. Flow regions 
The problem under consideration (figure 1) is that of axially symmetric dif- 

fraction of a plane strong shock by a Mach wave (weak shock) attached to the 
tip of the cone. The plane shock, the plane of which coincides at time t = 0 
with the (R,Z)-plane, moves with supersonic velocity U in the X-direction 
into a region (0) of still air; the air behind the shock has a velocity of 5. A slender 
axially symmetric cone of infinite length, whose tip at t = 0 also coincides 
with the (R,  @-plane, moves with supersonic speed W in the negative X -  
direction. When t < 0 the flow regions are (0),  (1) and (2); regions (0) and (1) are 
uniform and are separated by the plane shock of arbitrary strength, while 
region (0) is separated from the spatially non-uniform region (2) by a Mach 
wave emanating from the apex of the slender cone of semi-apex angle e.  A 
solution is sought for the time domain of interest t > 0. 

For t > 0, the flow regions are indicated in figure 1. Smyrl (1963) postulated 
a form for the interaction region with the aid of a shallow water experiment for 
the case of a moving slender wedge. Weak attached shocks are treated for both 
the wedge and cone cases, and therefore the configuration of the interaction 
region developed by Smyrl (1963) is adopted here. Physical arguments for this 
configuration are given below. 

The penetration of the slender cone past the plane shock and into the uniform 
flow behind it causes a slight disturbance of that otherwise undisturbed flow. 
This slight disturbance creates several flow regions (3), (a), (5 ) ,  (6) and the 
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Mach-reflexion region shown in figure 1. These flow regions are consequently 
treated as small perturbations of region (1). The following idealizations apply 
to figure 2. 

(1) The plane shock is deflected at  point I ,  having interacted with the weak 
shock originally attached to the apex of the cone. The diffracted plane shock 
is only slightly deflected from the undiffracted position and it intersects the cone 

FIGURE 1. The three-dimensional interaction. 

surface normally. This normal condition is necessary so that the flow behind the 
shock will remain parallel to the surface. 

(2) The weak shock is deflected at I into the position of the tangent IC to 
the wave EDCB. In  addition, a new weak shock AD is formed tangent to this 
wave and attached at  the apex to form region (5). 

(3) It should be noted that the contact discontinuity I0 must move with the 
particle velocity so that it is located approximately as shown in figure 2. I0 
divides the air into two non-mixing regions (3) and (4), thus separating the flow 
which comes from region (2) from that which initially comes from region (0). 
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(4) The flow is considered to be inviscid. 
With regard to the flow pattern of figure 2, region (2) is now truncated but 

otherwise not affected by the traversing shock and therefore time-independent 
solutions apply. Since weak waves are being treated, the form of the Mach- 
reflexion region or unsteady disturbance, according to Huyghens’ principle, 
is that of a spherical wavelet. The radius of the disturbance is C,t, since it is 
known that this disturbance will be spread at the local speed of sound C, relative 
to the local fluid velocity. This disturbance is being propagated away from the 
tip in the positive X-direction at a velocity (W+V,). In  region (5), the flow has 
been created by t,he forward part of the cone, and, since C, < ( W + q), the spread 

A 

FIGURE 2. Flow regions for t > 0. 

of the disturbance is unable to propagate back to the tip; therefore time- 
independent solutions for cones apply to this region. The weak shock A D  is 
attached to the tip of the cone, and the fluid passing through this bow wave 
has a supersonic velocity with respect to the cone. Consequently, there will 
be a region of supersonic flow, region (5), separated from the Mach-reflexion 
region by the sector BD of the Mach circle in figure 2. Steady-flow equations 
also apply to regions (3) and (4), but only with respect to a frame of reference 
fixed to the flow in region (1). 

In view of the assumed flow, the co-ordinate system is placed ( U  - V,) t behind 
the undeflected plane shock in the Mach-reflexion region. It should be noted 
that the pressure on the cone surface in this region influences the speed and 
deflexion of the curve shock. On the other hand, the change in speed and de- 
flexion also changes the pressure. 

Since the small perturbation is based on region (1) alone, the plane shock 
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wave is not restricted in strength, and the conservation equations applied 
across the shock, with the Mach number M = U/C,, yield 

where the subscripts correspond to the particular flow regions (1)  and (0). 
The Mach number of the cone is M‘ = W/Co. For the present discussion the 

origin is on the apex, point A of figure 3. The physical constants defining this 
problem are W ,  U ,  Po, po and E .  The physical constants cannot be arranged 
to yield a fundamental length or time-scale defining the problem. Therefore 
each physical quantity is a function of only X / t  or Rlt and the number of inde- 
pendent variables may be reduced. The flow field is a ‘conical field’ which Buse- 
mann (1943) first discussed in the study of three-dimensional steady supersonic 
flow. Regions (2) and (5) are clearly conical since velocity vectors along any line 
emanating from the apex of the cone are constant, being dependent only upon 
angle. The other regions are such that figure 1 will simply be magnified linearly 
with time. 

3. Mach-reflexion region 
The Mach-reflexion region, the unsteady region discussed in the previous 

section, is governed by the equations of unsteady inviscid, rotational motion. 
The rotationality is due to the curvature of the deflected plane shock from I 
down to the surface of the cone (figure 2). These equations, where V ,  P ,  and p 
are the velocity vector, pressure and density respectively, are 

% + V . ( p V )  = 0, 
at 

i 1 aV 
-+(V .V)V  at = --vp, P 

I a - (Pp-7) + (V. V) (Pp-7) = 0. 
at 

The linearization of equations ( 2 )  is accomplished by considering the flow in 
the Mach-reflexion region and regions (3), (4), (5) and (6) as slightly perturbed 
from region (1). For the Mach-reflexion region the small perturbation is time 
dependent, and Taylor expansions are taken in powers of e2 (Courant & Fried- 
richs 1948): 

(3) I P = P, + E2p1 C$ P’ ( X ,  R, t )  + . . . , 
p = p1 + e2p1p’(X, R, t )  + . . . , 
v = €2C,V’(X,R,t) +.... 

The subscript 1 pertains to the flow in region (1) and P’, p’, and V’ are non- 
dimensional. 
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The position of the diffracted plane shock is given by 

x = (u-V,)t+E2P(x,R,t)+0(€4).  (4) 

The boundary of the Mach-reflexion region, the Mach circle for a small perturba- 
tion to order c2, is the spherical wavelet. The spread of this disturbance is given 
explicitly by 

However, for consistency in the linearization, boundary conditions are specified 
only at x' = (U-V, ) t  and (X2+R2)* = Clt. Therefore, i t  is seen that the dis- 
turbance is described by the sphere 

(x~+B)+ = c l t + E 2 ~ ( ~ , R , t ) + o ( E 4 ) .  ( 5 )  

X 2 + R z  = (Clt)2.  ( 6 )  
The number of independent variables of the governing equations (2) is reduced 

to two by means of a conical transformation (Lighthill 1949) which makes the 
problem time independent. The transformations are 

x = X/Clt, r = RIClt. 
The transformation yields 

a i a  a i a  
ax = Ftax, 23 = q t a r ,  

17) 

and i a - x a  r a  1 
- - - - - S . V ' .  
at - t ax t ar t 

In  the above equation, S is the length vector with components {x, r} .  Therefore 
the non-linear equations (2) transform to 

1 
( S . V ' ) p - - V V ' . ( p V )  = 0, 

Cl 
1 1 

( S . V ' ) V - - ( V . V ) V  = - V I P ,  
CI PCl 

(9) 

I 
( S .  0))  (Pp-7) - - ( V .  VV') (Pp-7) = 0.1 

Cl 

Substituting equations (3) into equations (9) and retaining terms with co- 
efficient of e2 alone, there result the following linear equations: 

(10) 

( S . V ' ) p ' =  V ' . V ' ,  
( S . V ' ) V '  = V'P' ,  

(S .V')p'  = ( S . V ' ) p ' .  

Equation (10) may be algebraically manipulated to eliminate the components 
u' and v' of V'. This reduction results in a second-order partial differential 
equation in pressure alone which is 

The problem remaining is to solve the above elliptic boundary-value problem 
with the appropriate boundary conditions, which is the subject of the next 
section. 
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For the cases of the stationary wedge (Lighthill 1949) and the moving wedge 
(Smyrl 1963), a differential equation is found which is quite similar to (11). 
The difference is in the second term on the right-hand side of (11). For the 
equation without that term, Busemann (1943) showed that it can be transformed 
into Laplace’s equation. This technique was employed by both Lighthill and 
Smyrl in their analyses. A similar type of transformation for (1 1) was not found. 

The question of rotationality is now discussed. In  figure 2, the flow inside 
IOF is rotational whereas it is irrotational outside. Since the Mach circle is 
given by equation (6), shocks AD and IC are Mach waves, and small perturba- 
tion theory is used. Particles do not acquire vorticity by crossing these shocks 
but only by crossing the curved portion of the incident diffracted plane shock. 
These particles with vorticity stay inside IOF. Also, as pointed out by Smyrl 
(1963), the contact discontinuity does not appear in the boundary-value problem 
for P‘. Ting & Ludloff (1952), for the stationary wedge, showed there is no dis- 
continuity of density in a mathematical sense, but in the physical sense there is 
a slip-stream of finite width. Ludloff & Friedman (1952), for the stationary 
cone, showed that the difference of the entropy changes across the incident and 
Mach shocks is not supplied by a narrow slip-stream, but by an entropy gradient 
spread uniformly over the domain between the difiacted shock and the contact 
surface. It can be shown, in the manner of Smyrl, that P‘ of (1 1) can be solved 
without regard for the contact surface. 

4. Boundary conditions 
On the circular arc and straight line of BCDEF, enclosing the Mach reflexion 

region, the boundary conditions for P’ vary continuously for the different flow 
regions. The points lying on this line are given by the following transformed 
conical co-ordinates : 

The co-ordinates of the letters in figure 2 are B, ( -  1, 0); C, (x2, r2) ;  D,  (xl, r J ;  

In  the following discussion Pi indicates the non-dimensional perturbed pres- 
sure in the flow region ( i ) .  The pressure Pk, if it  exists, is simply Pk + PL since the 
flow regions have been linearized and the pressures are therefore additive. If 
r1 < r2,  then the value of P6 is identically zero since region (6) disappears. 

E ,  (xo, T o ) ;  p, ( 2 0 ,  0). 
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For region ( 5 ) ,  the small perturbations on the unit arc from B to D if rl < r2 
or B to C if rl > r2 according to Liepmann & Boshko (1956) are: 

A5 = ((M‘C,/C, + MJ2-  114, 
u; = - (H’Co/Cl + Ml) cosh-l ((M’CL/Cl + Nl + x) / (h5r) ) ,  

4 = (M’Co/Cl + Nl) h,[((M’Co/Cl + Nl + x) / (Asr )J2  - 114, 
P; = - (M‘CO/C1 + Hl) u;. 

The limitations on this linearization are 

cot 6 9 A,, I 

or 

cots 
tan B cosh-l + 0, , 

which provides for only infinitely weak, conical shock waves whose inclination is 
exclusively dependent upon {WCo/Cl + Xl}. This limitation applies to the entire 
analysis. 

The boundary conditions on the unit arc from regions (3) and (4) and a t  
x = xo are considered next. An essential difficulty in this problem is the deter- 
mination of the amount of deflexion of the plane shock. Lighthill (1949) and 
later Smyrl(l963) were able to derive a differential boundary condition, relating 
the normal and tangential derivatives, at the undeflected plane shock location. 
A similar attempt was made here which proved to be unfruitful. Also, for the 
wedge, regions (3) and (4) have constant values of perturbed pressures and velo- 
cities with the result that it  is possible to determine them completely in terms of 
the deflexion of the plane shock. For the slender cone, regions (3) and (4) have 
spatially non-uniform perturbed pressures and velocities, and the above method 
does not apply. 

To obtain the boundary condition at x = xo, one lets the position of the shock 
front be given by x = xo + e”f(r) + O(e4) + . . . in a manner similar to that of Light- 
hill (1949). The s2f(r) is uniformly small when e2 is small. The portion of the shock 
wave between I and B’ is distorted to an order of magnitude consistent with the 
perturbation. The conditions behind the diffracted shock are dependent on the 
local velocity of the shock normal to itself. The shock relations are such that 
those terms of order €0 are the customary normal shock condition. For the wedge 
the terms of order s provide a differential boundary condition, but not for the 
cone. As shown below a different approach is used. 

In  order to arrive at  boundary conditions for regions (3) and (4) and a t  x = xo, 
it  is first necessary to outline a procedure that was originally privately suggested 
by Busemann in 1964 to the author. Historically accredited by Busemann to 
H. Weyl, it  is related to the method by which two-dimensional interferometer 
photographs of three-dimensional phenomena were interpreted. Since it does 
not appear to be adequately discussed in the literature the approach is given 
here in detail. 

In  the following P&, r )  is defined as before. First a brief outline of the develop- 
ment without details is given, and then the detailed outline is given. A function 
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P;3(x, y) is found by integrating Pi(%, r ) .  An artificial function c ( x ,  r )  is found by 
integrating P&(x,y). Evaluation of the last two steps yields Pc(x,r) to be the 
integral of P;(x, r ) .  Differentiation of PC(r, r )  yields therefore Pi(%, r ) .  Now 
PL(x, y) may also be found independently by integrating Piw, the known wedge 
distribution, where the iw  designates the corresponding flow region (i) of the wedge 
and then <(x, r ) .  Therefore, Pi(%, r )  can be determined from the known Pi,(x, y). 

P&, y) is taken as the two-dimensional description of a pressure field found 
by integrating P;(x, r )  distributions along the z-co-ordinate from - co to + 00 

for a fixed y. Therefore, a linear integral equation arises which can be written 
in the final form 

If P;3(x,y) were known, then with the kernel, R(R2-y2)-*, equation (15) is a 
Volterra integral equation of the first kind. The P(B(x, y) physically describes the 
two-dimensional pressure field of a supersonic flow on a concave aerofoil. The 
problem, therefore, is to provide a separate description of P;3(x, y) and, in addi- 
tion, provide an inversion or its equivalence of equation (15) to provide P;(x, r ) .  

The P&(x, y) distribution with the linearly increasing slope of its surface can 
be replaced, using superposition, by a linear succession of wedges of given 
constant angle. Considering the conical character of both the wedge and cone 
interaction problems, one recognizes that the flow regions are similar about 
r = 0 and x = xo of figure 2. For the wedge, this point of similarity was noted 
by Smyrl (1963) in the section on an aerofoil of arbitrary shape. The pressure 
distribution from each individual wedge is the same except for size with respect 
to the others; see Smyrl’s figure 12. The individual contributions to the pressure 
PB(x,y) on a space-fixed point (x, y),referenced to (xo, 0 ) ,  are found on the relative 
co-ordinates (x /w,  ylo), where w is the ratio of the tip penetration of succeeding 
wedges with respect to its value on the starting wedge. Therefore, the pressure 
integral, for a linear succession of wedges, reads as follows: 

P&(x, y) = Plw(x/w, y/w) dw, 

where K is a constant. P;,(x, y) is the two-dimensional pressure distribution for 
a wedge. 

There is still needed an inversion, or its equivalence, of equation (15). P&(x, y) 
is rotated 360°, and integration is performed for a fixed r along q5 from -a to 
+ 00, where y = (r2 + q52)* (ydy = q5 dq5). The resulting new function pC(x, r )  is 
given by 

a x ,  r )  = J P;3[., (r2 + P141 d# = 2Ju=r P37 Y) (y2 - r2)4 dy. (17) 
+a W 

- w  

Substitution of (15) into (17) yields 

Simplification of ( 18) yields 
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The equivalence of an inversion, by differentiation of (19), yields 

1 aP, 
P;(x,r) = ---. 

2nr ar 

The method of applying (16)-(20) to obtain the perturbed pressure distribution 
is as follows: First (1  6) is used with the values of Pi, obtained from the theory of 
the wedge case by Smyrl. Secondly, c ( x , r )  is determined by integration. The 
desired Pi(., r )  can then be found from (20). This method and order of steps are 
used to calculate boundary values on the Mach circle, from C to E for Pj, and 
E to P for Pk. The reason the entire Mach-reflexion region, rather than just its 
boundary conditions, is not worked in this manner is that the method becomes 
quite involved numerically. 

As an example of this procedure, first consider the boundary values of Pi 
behind the shock for x = xo and ro < r < r3. The Pi, in equation (21) is the con- 
stant value for the wedge in region (4) (Smyrl 1963). After completion of the 
trivial analytical steps, Pi becomes 

Pi(., r )  = ~ cosh-l ( T 3 / r ) ,  

where To = [ M f 2 -  114. Using (21) and the fact that regions (3) and (4) are conical 
and supersonic, one can obtain the boundary condition on the unit arc. 

For the larger range of independent variable r ,  0 < r < r3 and x = xo, it is 
necessary in order to delineate the steps first to compute, by means of (16), 
the following function numerically: 

(22) 

(21) 
pi, 
TO 

p a x o ,  Y) = K j Piw(xo/w, Y/O) dw, 
0 

where the Ph stands for the wedge value. This result is substituted into (17) 
and it yields 

dy. 
P,(xo,r) = 2j;*Pi4x0Y) (y2- r2)i 

The final step, equation (17), results, for the range 0 < r < r3 and x = xo, in 

i a  
2r ar 

P ( x o ,  r )  = - - - (P, (xo, T ) ) .  

Some results of these numerical calculations are presented in table 1. 
It should be noted that application of the above procedure to steady flow 

results in a neglect of the v’% contribution to the pressure coefficient. Since this 
method is used to calculate boundary conditions at x = xo and the boundary of 
regions (3), (4), and (6), if it exists, then for region (5) the contribution of 
v’2 to PL is consistently neglected, as can be seen in (13). The completely correct 
approximation for Pi (Liepmann & Roshko 1956) is 

PL(x, r )  = - uk(M‘Co/Cl +MI)  - (24) 

The last term is negligible everywhere except in the vicinity of the cone surface, 
where the order of v‘ is different from u’. Equation (24) at the cone surface is 

P&,r) = [2w’Co/C,+M,I2(log,(2/hS€)-~} = [M’Co/C,+Ml]210g,(2/h,s). 
(25) 
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The approximation of (25) is valid if 

which are the criteria of (14) and no new limitation is required. 
Boundary values have been described from B to F with only the boundary 

along the axis from P to B remaining to be determined. Owing to the singularities 
on the axis, it is necessary to formulate the boundary conditions on the surface 
in the following manner. 

The shape of an axially symmetric body is determined by h, which represents 
the cross-sectional radius of the body. The boundary condition along the surface 
is that the normal velocity vanishes. This boundary condition requires 

where the h’ indicates differentiation of h. For an axially symmetric body the 
expression v’R/(M’CO/Cl + Ml) is equal to hh’. As an approximation, therefore, 
one may take 

v’R = (M‘Cn/Cl + Ml) hh’, (28) 

which says that v’R is essentially a constant in the vicinity of the axis. 
Therefore, on the surface i t  is 

} (29) 
v’R(x < (MCo/C1 - Ml),  r + 0, t }  = (M’Cn/C1+ MI) hh’, 

where h = h[S+(M’Co/Ql)+Ml)Clt]. 

Using the perturbed, non-transformed r-momentum equation 

1 avi apt 
aR--Cl,at, 

- 

there results the following equation: 

RaP’/aR = - (M’Co/Cl + lcll)z [h” + hh”]. (30) 

Because h” = 0, the boundary condition on the surface of the cone in conical 
co-ordinates is 

rap‘/& = - (M’Co/Cl + Ml)2. (31) 

Equation (31) can also be obtained from the transformed r-momentum equa- 
tion found in (10). To check the continuity of this derivative one has only to 
investigate Pk. Its derivative is found to be the same as (31) in the neighbourhood 
of B. 

When r3 < To, the interaction is inside the sonic circle. This phenomenon can 
be seen in figure 3. There are, therefore, no regions (3) and (4). The interaction 
point I still consists, however, of three shocks and a contact discontinuity. The 
contact discontinuity is considered to be approximately in the location of a 
straight line from the origin to r3. This particular case is not treated here. 

39 Fluid Mech. 22 
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FIGURE 3. Flow regions for t > 0, 'I; < r,,. 

5. Method of solution 
Inspection of the variable coefficients of (1 1) shows that inside the Mach circle 

the partial-differential equation is elliptic; physically it is a subsonic region. At 
the boundary it is parabolic. Outside the Mach circle the equation is hyperbolic. 
A closed form solution of the elliptic region appears not possible so numerical 
methods were used. The boundary conditions are mixed, since both Dirichlet 
and Neumann types appear. 

A finite-difference-equation analogue of (1 1) was constructed on a square 
mesh, where each computational unit was composed of nine grid points of mesh 
spacing equal to  0.025 compared to a maximum Mach circle radius of 1.0, by 
replacing partial derivatives with certain partial difference quotients (see For- 
sythe & Wasow 1960). The resulting system of linear equations was solved itera- 
tively by the method of successive over-relaxation and employed a relaxation 
factor to accelerate convergence. This iterative process was repeated cyclically 
until a relative residual was found to be less than 10-6. The maximum normalized 
residual m@), where n is the nth iterate, of the above criteria was found to be 

for all cases. 

6. Discussion of results 
The pressure distribution has been calculated in a number of cases at the 

surface of the cone. The perturbed-surface-pressure variation in the Mach- 
reflexion region from B to F is illustrated in figure 4. The distance from B to F 
is adjusted to make it the same for all cases. For two of the cases shown in figure 4, 
the perturbed pressure behind the traversing shock wave, x = x,, exceeds the 
new steady-state surface pressure Pi of the cone a t  x = - 1. The pressure varia- 
tion is practically linear. This is due to the fact that in the neighbourhood of F ,  
at the cone surface, the slope of the pressure is continuous and the pressure tends 
to remain constant for some distance along the surface. Compared to the wedge 
case (Smyrl 1963) the behaviour is different because in the cone case boundary 
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condition (31) governs, whereas the derivative of perturbed pressure is equal to 
zero for the wedge on the axis. The isobars in the two cases reflect the basic dif- 
ference. The angle of the cone has been restricted to small values to minimize 
the parameter e. The above-mentioned pressure ratio will be discussed below. 

100 I 1 

-I> 

30- 
P‘ 

:: M =5, M = 2.14 

I‘\ M = 6.25 M=2*5  

- 

I I I I I I I I I  

FIUURE 5. The pressure distribution for M = 11-25, M‘ = 2.5, E = 0.025. 
, Isobars ( P  - P,)/p, C;Le2. 

Figure 5 illustrates the total pressure field over the entire region for a particular 
case. Figure 5 is more easily clarified by also reviewing figure 2. The origin of 
the sonic circle after the blast shock has collided with the tip of the cone, i.e. 
for t > 0, is at a dimensionless distance (M’Co/C, +MI) measured downstream 
from the tip. The plane shock is at a distance (M’ + M )  Co/C, also measured down- 
stream from the tip. The radius of the Mach circle is normalized to be 1. The iso- 
bars of the steady conical flow of region (5) are to the left of the sonic circle and 
serve as its boundary conditions. The isobaric distributions of the Mach-reflexion 

39-2 
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region, interposed between regions (5) and ( 2 ) ,  are illustrated in figures 6 and 7 
for two distinct cases. It is interesting to note the extent to which the conical 
character of region ( 5 )  extends into the disturbed region. 

x - -0.32170 X, = 0.38558 
2. - 

-0.8 -0.6 -0.4 -0.2 0 0.2 

FIGURE 6. Transient isobars for M = 11.25, M' = 2.5, 8 = 0.025. 

-0.8 -0.6 -0.4 -0.2 

FIGURE 7. Transient isobars for M = 2.14, N' = 5, t- = 0.01. 

The transient pressure distribution is transmitted to the cone surface in the 
following manner. For example, a particular point is at  a distance I, from the 
leading tip and at t = 0 the shock wave strikes the tip of the cone. Therefore at 
t = h/(C0 M' + C, M )  the point will experience a, new pressure change due to the 
transmitted shock and subsequently feel the surface pressure distribution inside 
the Mach circle. When t = L/(C,(M' + M )  - Cx}, a new steady-state condition 



Shock interaction on a cone 613 

will prevail, and the pressure will be constant from that point back to the tip. 
The duration of the transient phase is therefore 

For example, if M’ = 3, M = 5 and Co = 1000 ft./sec, the duration of the 
transient phase for L = 1 is 50psec. 

Figures 6 and 7 illustrate the pressure field on and above the surface of the 
cone. Figures 5, 6 and 7 have to be rotated 360 degrees about the axis of sym- 
metry for the physical picture. The Mach-reflexion region is viewed as a sphere 

A1 2 

FIGURE 8. Ratio of surface transient peak to steady st&e pressure for 
different values of M and M‘. - - - , Wedge; -, cone. 

with one end cut off by a plane with a cone inserted through the centre. This 
distribution is then magnified with time in a conical manner with the geometry 
at succeeding times remaining symmetrical. Figures 6 and 7 are characteristic 
of all the results obtained. 

Figure 8 illustrates the ratio of the transient surface pressure behind the 
diffracted shock compared to the new steady surface pressure of region (5) 
for different values of M and M’. The wedge values are calculated from Smyrl 
(1963) and are compared to cone values obtained here. For the most part the 
pressure ratios of the wedge do not exceed one except for small values of M’ 
and low and high values of M .  However, in contrast to the wedge the cone values 
seem mostly to exceed one except for small values of M‘, in particular M’ = 1.25, 
where the cone values follow quite closely the trend of the wedge. By increasing 
M’, the ratio increases until M‘ > 5, then it decreases. For constant M’ the 
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pressure ratio first decreases then steadily increases for increasing blast shock 
strength; figure 8 is incomplete in some regions because the theory does not 

apply. 

7. Conclusion 
It was found that the ratio of the transient surface pressure directly behind 

the diffracted shock to the new steady surface pressure ranges from 1.25 to 0.6. 
The pressure ratio for the wedge is in general below one, although for some cases 
it does exceed one. This is to be expected because the wedge is a two-dimensional 
problem, whereas the cone is three-dimensional, and therefore they should yield 
characteristically different results. The results also indicate, within the limits of 
the analysis, that increasing the Mach number of the cone, the Mach number of 
the plane shock being less than 4, gives a decrease in the pressure ratio from 
values greater than 1.0 to values approaching 1.0 and perhaps slightly below. 
It appears, therefore, that for the hypersonic regime the pressure ratio is less 
than or equal to one. For the range of plane shock Mach number 2 < M < 10 
the maximum pressure ratio is 1.1 and there is a large variation in the value of 
the pressure ratio. 

The author is grateful to Dr Adolph Busemann for his interest and suggestions 
during the course of this study and to N. Wayne Rhodus for his work in connexion 
with the computer programme. The continued encouragement of Dr Paul M. 
Chung has also been of great assistance. 
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ToPiI(x0,y) ToPo(x0, r )  
r r3 2r3 

0 

W = 2000 ft./sec, U = 9000 ft./sec, C, = 800 ft./sec, 
- - 

0.05 2.12365 1.11742 
0.1 2.00596 1-09001 
0.2 1.76996 1.00313 
0.3 1.53559 0.88801 
0.4 1.304 16 0.75611 
0.5 1.07692 0.61627 
0.6 0.85566 0.47638 
0.7 0.64347 0.34422 
0.8 0.4 4 6 3 9 0.22818 
0.9 0.27978 0.138 18 
1.0 0.17a26 0.07462 
1.10 0.08301 0.02394 
1-20 0~00000 0-00000 

W = 2000 ft./sec, CJ = 5000 ft./sec, C,  = 800 ft./see, 
0.05 2.27815 1.29962 
0- 1 2.16220 1.37192 
0.2 1.92869 1.18323 
0.3 1-69525 1.06442 
0.4 1.46314 0.92679 
0.5 1.23355 0.779 15 
0.6 1.00822 0.62 942 
0.7 0.79035 0.48552 
0.8 0.58657 0.35620 
0.9 0.41593 0.25215 
1.00 0.31142 0.17044 
1.10 0.20999 0.09711 
1.20 0.10857 0.03665 
1-25 0.05786 0.03183 
1-40 0~00000 0~00000 

W = 7000ft./sec, U = 3000ft./sec, Co = 1400ft./sec, 

0.05 4-46685 2.39388 
0- 1 422554 2.33750 
0.3 3.74527 2.15866 
0.3 3.27078 1.92090 
0-4 2,80362 1.62704 
0.5 2.34575 1.35433 
0.6 1.90025 1.05766 
0.7 1.47215 0.77085 
0.8 1.06984 0.50683 
0.9 0.69301 0.27401 
1.00 0.31766 0.08602 
1.10 0~00000 0~00000 

TABLE 1 

P'(x,,, r )  

7 = 1.4 

21.809 
18-293 
14.026 
11.336 

- 

9.3264 
7.6744 
6.2228 
4.8763 
3.5627 
2.2120 

Equation (21) 
Equation (21) 
Equation (21) 

y = 1-4 

24.141 
20.427 
15.851 
12-949 
10.774 
8.9788 
7.3920 
5.9075 
4.4398 
2,9370 

Equation (21) 
Equation (21) 
Equation (21) 
Equation (21) 
Equation (21) 

7 = 1.4 
87.610 
73.497 
56.477 
45.837 
37.957 
31.553 
26.023 
21.050 
16.54 
Equation (21) 
Equation (21) 
Equation (21) 


